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I. INTRODUCTION

Characteristic time scales for collective phenomena in plasmas
encompass many orders of magnitude. Where kinetic effects are crucial,
i.e. fluid descriptions are inadequate, computer simulation methods
have been applied very successfully to studies of the nonlinear
evolution of plasma phenomena on the faster time scales. For both
applications and basic studies, there is increasing interest in
extending simulation techniques to kinetic phenomena on much longer time

scales. .

One approach to modelling long time—scale behavior in such systems
is to alter the governing equations to eliminate uninteresting high
frequency modes. Examples include the electrostatic and Darwin field
approximations in plasma simulation, and incompressible hydrodynamics.
Other approaches, described here and in other chapters in this volume,
are subcycling, orbit-averaging and implicit time integration.

The most adaptable and reliable tools for study of complex kinetic
plasma behavior are the "particle-in-cell” (PIC) codes, in which the
plasma evolution is modelled by 103-107 simulation "particles”, each
representing a large number of plasma particles, and moving according to
the classical Newton-Lorentz equations of motion in fields governed by
Maxwell's equations. In plasﬁas. many instability, dissipation and
nonlinear saturation mechanisms are kinetic in nature. As particle
codes have been very successful in studying such phenomena, improving
their efficiency for long-time—scale simulation is of great value.

This Chapter describes a method for implementing implicit time
differencing in PIC plasma codes, in which the equations for the
t ime—advanced quantities are constructed directly from the particle
equations of motion by linearization, rather than by introducing fluid
(velocity moment) equations. This "direct” method is outlined in
Section I1.A.1; a simple but practical implementation is in Section

IT.A.3.

The divisions of this chapter are as follows: The remainder of
this Section defines the explicit electrostatic PIC algorithm,
introducing the notation to be used throughout this Chapter, and
outlines the properties of explicit differencing and the implicit scheme
we use. Section II presents the direct method as applied to the
electrostatic field case, some results, and discusses remaining
limitations on time step, conservation properties, and linear stability
theory. For strongly magnetized plasma, the gyro—averaged algorithm in
Section III removes the unwanted large cyclotron frequency. In Section
IV the direct method is generalized to include the full electromagnetic

field.
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I.A. Characteristic Time Scales in Weakly—-Collisional Plasma

The highest frequencies are associated with the small mass of
electrons and the high speed of light. The Langmuir frequency, Wpe?
also called simply the plasma frequency, characterizes charge—separation
oscillations. Others include the cyclotron frequency, ,,., and the
transit time for electrons or light to cross a characteristic distance.

In contrast, long time scales can be set by ion inertia,
electromagnetic effects, and large spatial scale lengths. The ratios of
electron to ion plasma and cyclotron frequencies, and of hydrodynamic to
electron transit times, are determined by the small number Zme/hl. where
Z is the ionic charge state. Where the dominant forces are from
magnetic fields due to currents in the plasma itself, the frequencies
are reduced relative - to @pe by at least the ratio c¢/v,, where c and v,
are light and electron speeds. : :

I.B. PIC Electrostatic Force Calculation

The plasma simulation models treated here use a spatial grid to
mediate the particle interactions. Originally developed at Stanford,
this approach is wused in some form in almost all modern plasma work.
Rather than summing interactions over particle pairs, a charge density
is formed from the particle positions .onto a spatial grid. Using
partial difference equations on this grid, an electric field is found.
Then the particles are individually advanced in time using classical
equations of motion with the acceleration found by interpolation from
the electric - field on the grid. This method is not only faster than
summing over particle interactions, it avoids very large accelerations
of closely spaced particles, which create complications irrelevant to
the simulation of collective effects in weakly collisional plasma.

In the description and analysis of these algorithms, it is helpful
to consider the charge of the particle to be a diffuse "cloud”, with
qS(x) ‘the charge density of a particle whose center is at the origin.
The charge density of a plasma with particle number density n(x,t) is

p.(x,t) = S(x)*qn(x,t) =.f dx' S(x-x') qn(x',t) | _ (1.1)

where the asterisk denotes convolution. This charge density is sampled
at the lattice points of a regular grid in space. To avoid clutter we
will temporarily restrict the discussion to one dimension. The charge
density associated with grid point j is taken to be p,(t) = pc(xl.t).
where X,=jAx, and Ax is the grid spacing. In practice, the contribution
of each simulation particle is added to P
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Py =Zi:‘lxs(xj -xi) (1.2)

where i is the particle index, q; is the charge, and S is the
particle—grid interpolation spline.

The form of the weighting function S(x) is designed to provide good
numerical properties. As developed originally at Stanford, these models
used "nearest—grid-point” weighting between particle and grid quantities
(Hockney, 1965; Burger et al, 1965; Yu et al, 1965; Boris and Roberts,
1969). Most present work is done with linear weighting (Birdsall and
Fuss, 1969; Morse and Nielson, 1969). In one dimension, S is the linear
spline, a tent-shape extending over two cells and zero elsewhere.

From p a potential and electric field are derived on the same mesh.
These satisfy relations such as

P41 Pj-1
E’.——T=_—VJ¢ ] (1-3)
$je1 ~20; +o;_,

Ax2 =" pj (1-4)

in rationalized cgs units (Panofsky and Phillips, 1962; Jackson, 1962).

Additional smoothing is often applied to py or ¢j. Consider this
to be a convolution with a function 8.

The particle force field is obtained by an interpolation of the
form

F, = q;Ax ZJ: E, S(}(j - x;) (1.5)

where the sum is over grid points j and S is the same function used in
(1.2).

In three dimensions the locations of grid points are given by

X, = (i Ax, igay, jzAz) = j-Ax (1.8)

where j is a vector with integer components and Ax is a tensor. In the
simplest case of a cubic mesh with spacing Ax, xj is just jAx. In (1.5)
Ax is replaced by |Ax| = det Ax, the volume of one grid cell.

We will maintain a convention in which n and F refer to particle
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quantities defined on a spatiai continuum, while p, ¢, and E are defined
on the spatial grid.

I.C. Explicit Time Differencing of Particle Equations of Motion

For the integration of the particle equations of motion numerical
time differencing algorithms of the elegant type discussed by Buneman
(1967) are almost universally used.

X 4y X Vosd Voo Vo+dk Voo qB
AT s S SR Bl UL (1.7ab)
At At n 2 mc

%En(xn)' (I.7¢)

where a,

and subscript n denotes time level t, = nAt. This is usually called the
centered leapfrog scheme.

Equations (1.2, 1.3, 1.4, 1.5 and I.7ab) outline the time cycle of
an explicit PIC simulation.

In the simplest, unmagnetized case, longitudinal oscillations in a
uniform cold plasma consist simply of harmonic oscillations. The
properties of the leapfrog scheme are illustrated by considering a
single particle with a linear restoring force, e, = —w%xn. with no
magnetic field term. Setting x, = Xz® = X exp(-iwnAt), where z =
exp(—iwAt) is the (complex) change in an amplitude per time step, we

find

(vpat)2 = - (z-1)%/z (1.8)

4sin?(wAt/2)

For wyAt < 2, the roots z lie on the unit circle, i.e. w is real: the
oscillations are neither growing nor damped. This property is valuable
in plasmas, where oscillatory behavior -is ubiquitous and the distinction -
of stable and growing oscillations is crucial to many studies.

For woAt > 2, one root z lies outside the unit circle (Im w >0);
this numerical instability arises for any ezplicit scheme for wjAt above
some threshold of order unity (Cohen et al, 1982b). Instability can be
avoided through the use of implicit time integration, at the expense of

increased complexity.
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I.D. Implicit Time Differencing of the Particle Equations of Motion

. The first major issue is the choice of finite-differenced equations
of motion for the particles which have the necessary stability at large
time-step and are accurate for the low frequency phenomena to be
simulated. We choose not to consider backward-biased schemes with
relative errors of order At. It is not expensive to achieve relative
error of order At2, with error At?® in Im w, the growth/decay rate.

Several suitable schemes for time-differencing the particles have
been analyzed and applied (Cohen et al, 1882b). Here, we will discuss
only the "D,” scheme, also called the 1 scheme (Barnes et al, 1983b),

which can be written

vn+* +vn-—# an

Xpe1 “Xp _ Vo+} “Vo-4  _
T = Vas — - T & + > x — (I.9ab)
where a, = 4[a,_, + %En+l(xn+l)]' (1.10)

Or, if the recursive filter is applied to the fields rather than to the
particles (Barnes et al, 1983b), we write

5, = 2 Ey(xy) = & [En_l(xn) +En+1(xn)]. (1.11)

where E, = }[E,_, +E_ ,,]. (1.12)

This choice saves storage of one vector quantity per particle, relative
to (I.10). In fact, the particle mover coding is exactly the same as
for the explicit leap~frog method (I.7)! The only difference is that
the electric acceleration is from En instead of E,. Note that E_ , is
evaluated at different positions in (I1.10) and (I.11). This creates
side effects which we discuss in sections II.A, II.C.2 and 1I.C.4.

To check the accuracy of this scheme, we can derive and solve a
dispersion relation for harmonic oscillations, analogous to (1.8):

(0pAt)® + (2/z - 1/22)(z - 1)%3/z = 0 (1.13)

For wgAt < 1, we find (Cohen et al, 1982b)
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tRe w/wg = 1 — (11/24)(w,At)2 +..., Im w/wy = ~(wyAt)3/2 +...,

and an extraneous damped mode with lzlel For wgAt>>1, the modes are
heavily damped, |z|-(wyat)~2/3,

Equation (I.9b) can be solved exactly for v, . i by adding }a At to
n-§° doing a rotation, and again adding 1& At. The result is

Vo+p = da At + R-[vn_* + ta At] (1.14)

where the operator R effects a rotation through angle —2tan~!(Qat/2)
(where 0 = gB_ /mc), and can be written

(1462)R = (1-62)I + 200 — 26xI, (1.15)

where 8 = QAt/2 and I is the unit tensor. For small QAt, R = I — DAtxI.
For large DAt, R = -I + 207200 - (4/0%At)0xI.

The optimum design of these time-difference equations is the first,
but simpler, issue in practical implementation of large time-step

me thods.

With explicit differencing, the time-cycle is split between
advancing particles and fields; these calculations alternate and proceed
independently. A price we pay for implicit differencing is that
time-cycle splitting is more complicated. An implicit code must solve
the coupled set of equations (I.2) through (I.5), with (1.9-1.10) or
(I.11-1.12). This is the second issue in implementation.

II. DIRECT METHOD WITH ELECTROSTATIC FIELDS

In all implicit schemes the future positions x ., depend on the
accelerations a,,;, due to the electric field E ,,. But this field is
not yet known, as it depends on the density pn+1 of particle posltlons
{x,+1}- The solution of this large system of nonlinear, coupled
particle and field equations is the other major implementation issue.

II.A. Solution of the Implicit Equations

In the first method implemented for this solution, the fields at
the new time level are predicted by solving coupled field and fluid
equations, in which the kinetic stress tensor is approximately evaluated
from particle velocities known at the earlier time. After the fields
are known, the particles are advanced to the new time-—level, and, if
desired, an improved stress tensor is calculated and the process
iterated. This approach has been described in detail by Denavit (1081),

and Mason (19881a).
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It is also practical to predict the future electric field E ,,
quite directly by means of a linearization of the particle-field
equations. One form of this method, its implementation, and some
examples verifying its performance, have been outlined by Friedman et al
(1981). Another form is described by Barnes et al (1983b); compare
(1.10) and (I1.11-1.12), and see Section I1.C.4. Langdon et al (1983)
explore the algorithm with great generality, and consider many important
details, such as spatial differencing and filtering, and iterative
solution of the implicit equations.

1. Outline of the "direct method”

The essence of the '"direct” method is that we work directly with
the particle equations of motion and the particle/field coupling
equations. These are linearized about an estimate (extrapolation) for
their values at the new time level n+l. The future values of {x,v} are

divided into two parts:

e increments {6x,6v} which depend on the (unknown) fields at the future
time level n+l, and

o extrapolations {x{9),v{9]} which incorporate ail other contributions
to the equation of motion.

The charge density pgg{ corresponding to positions {xgg{} is collected,
as are the coefficients in an expression for the difference 6p({6E}) =
Pust — pggz between the densities obtained after integration with E_ |

and with the corrected field E_,,, = 6E + E{9). These comprise the

source term in Gauss' law
V:-E_,,, = 6p({6E}) + p{? _ (11.1)

This becomes a linear elliptic equation, for &¢ or ¢ ,.,, with
non—constant coefficients.

The care with which we express the increment {6p} is a compromise
between complexity and strong convergence (Langdon et al, 1983; Barnes
et al, 1983b). If necessary, 6p may be evaluated rigorously as
derivatives of equation (I1.2) ("strict differencing”; (Langdon et al,
1983, section 4), or as simplified difference representations (Langdon
et al, 1983, Section 3.4; Barnes et al, 1983b) of (I1.10) for each
species. In the following subsections, we consider these two cases in
one dimension, generalize to higher dimensions and to include a magnetic
field, and briefly discuss an iterative solution of the field equation

in two dimensions.
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2. A one-dimensional realization

The direct implicit method 1is illustrated in the following
one—dimensional unmagnetized electrostatic example. The position x, .,
of a particle at time level the1» @s given by an implicit time
integration scheme, can be written as

Xpe1 = BAt2a  , + X ... (11.2)
where p > 0 is a parameter controlling implicitness and is & for the D,
scheme; n+1. the position obtained from the equation of motlon with the
acceleration a,, , omitted, is known in terms of positions, velocities
and accelerations at times t  and earlier. Eliminating vn+* between
(1.9)-(1.10), we find

~
X

= a 2
ne1 = Xp + Vp_gAt + da _,At (11.3)

In its most obvious form, which we adopt for this example, the direct
implicit algorithm is derived by linearization of the partlcle positions
relative to x ~n+1, that is, Eggl 0 and therefore x(ol = xn+1

At the grid point located at X.=jAx, the charge density 51'n+1 is
formed as in (I.2) by adding the contribution of the simulation

particles at positions {El.n+l}'
B‘j.n-ﬂ = ? qlS(Xj - gi.n-l-l) (11.4)
If we expand S in (1.2) with respect to position, then
6P),n+1 = =X Q Oxy 8'(Xy — % q4y) (11.5)

with éx; = xy .y - xl n+y @and S'(X) = dS/dX. In terms of E ... the
partlcle acceieration is obtained from (I1.5) evaluated at xn+1

mia; n41 = Q34X %3 Ej,ne1 S(X; =X n4y) (11.8)
From the particle equation of motion in the form (1I1.2),

= 2
6x, = pAt? a; .., (11.7)

= At®(q;/m, )Ax %}s(x,4§i_n+l)Ej'n+,
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The densities 5n+1 and 6p_ ., are inserted into the field equations
(I.3-1.4). With summation over species understood, Poisson's equation

in rationalized c.g.s. wunits becomes

~ Piv1.n+1 2P5.n41 Pj_1,n+1
“Pj.n+r1 T Ax2 (11.8)

~ ~ ¢k+l, +1 -¢k‘l. +1
+ax T (Ba%At?/m) S'(X;=¥, ,,)S(X%~%; 14q) v =

For linear splines, Ax®S'(x) = %1 or 0, there is no contribution for
lj-k| > 1, and therefore the field equation is penta-diagonal. After
solution of (I11.8), E is formed using (I.3), then the particles can be
brought serially to their new positions using (I1.2) or its equivalent.

The derivation of (I1.8) respects the actual field interpolation
and charge weighting used with the particles; because of this and its
linear stability properties, we call this a "strict” implementation of
the direct method. Further discussion is found in Friedman et al
(1981), Sec. 2 of Langdon et al (1983), Cohen et al (1984), and Section

I1.C.2 of this Chapter.

3. Simplified Differencing

It is convenient to implement a simpler field equation than (11.8),
while retaining benefits of the direct method. Writing (II.5) as

op = - [v-}: q 6x S(x - in”)] i (11.9)
. x= ]

we see that (I1.5) and (11.8) are finite element representations of

6p = - V-[péx], (I1.10)
and the elliptic partial difference equation
-p =V [1 4+ x(x)]ve (11.11)

where x(x) = fp(x)(q/m)At? summed over species, i.e. X = p(prt)z.
Because of the similarity of (II.11) to the field equation in dielectric
media, we call y the implicit susceptibility. Where w At is large, the
regime we wish to access, note that x >> 1 is dominant in the

right-hand-side of (II.11).

With the extrapolated charge density ;j.n+1 and a reasonable
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finite-difference representation of the linearized implicit contribution
ép = — d(xE)/0x, the field equation in one dimension is

By onst = [(9X43)E 4 nar = (14X g )B g nes J/Bx, (11.12)

Two representation of xl+f used here are (Langdon et al, 1983, Eqs.
(28ab))

Xjep = 3 Dxy + xj44] (11.13a)

Or Xj.j = max (xj. xj+1). (I1.13b)

where x; = At? ¥ [pzj_nﬂg]’ | (11.14)

is a sum over species index s. In both (II.12) and (II.14), sj.n+l is
given by (I11.4).

In terms of the field

Ejne1 = 3 [Ei-t.nﬂ + Ej+§.n+1] (11.15)

formed from E at half-integer positions, the particle acceleration is
evaluated at §n+l using (I1.8). This algorithm is the shortest implicit
PIC scheme we have seen, and was the most robust in the test problem of

Section II.B.1.

4. General electrostatic case

We return to the multidimensional case, possibly including a
magnetic field imposed by external currents, showing the calculational
steps to be performed in the two cases resulting from the choice of
(1.10) or (I1.11). We begin by restating the method in a more general

form.

Evaluation of the extrapolated demnsities.

The extrapolated charge density pagl is evaluated as in (I.2), but
from positions {xﬁgl} obtained from the equation of motion with a_ .,
given by Eggl. which is a guess for E .,. This charge density does not
correctly correspond to the field Egg ; that is, V-Egg * pgg . We wish
to calculate an improved field E_ ., with which the particles are
re-integrated to positions {x_,;}, whose charge density p,,," does

satisfy
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VEpt1 = Pret (11.18)
To this end we rewrite (II;16) as
v",En+l - 6pn+l = V'Eggz - P£2{~ (11.17)

where E ., = 332{ + 6E_ ,,. and similiarly for p_ ,; 6p,,, is due to the
increments {6x} in the particle positions, which in turn are due to the

. . 0
difference between En+l and E£+z.

Evaluation of the incfements due to future fields.

Using (I1.10) and the equation of motion, we express ép_ ., as a
linear functional of SE_ ,,. In the general case, the increments {éx,6v}
are evaluated by linearization of each equation of motion (Langdon et
al, 1983; Barnes et al, 1983b) about position xﬁﬂ{; here, we have

6!n+l = 6vn+tAt'
gAt
Vneg = - 0Eas1(x82]) - (unmagnetized),
gAt (0 _
or 6vn+* = T"§;63n+1(’n+2) (magnetized), (11.18)

where T = %[I+Rn(!£gk)]. which follows from (I.14).

With (I1.18), the implicit term 8p = - V-(pdx{9]) in (11.17) is
seen to be :

(0 At2
- V- (p{%)6x) = - v-[z; ’:% T,]-an (11.19)

6p
- V-(x*6E)

The [...] is a sum over species s, not each particle. If only the
electrons are implicit, only they appear in (I1.19). In this case, the
terms [...] require only a knowledge of the electrons’ p (in addition to
the net p used on the right side of (II1.21)). In general, it is
sufficient to accumulate pggk.' separately from species with differing
q/m. This requires more storage, but no more computation than for an
explicit code.

The implicit susceptibility
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[)3 & 'q_'“z T.] (11.20)

is a tensor due to the rotation R induced by B. The more general
expression

= 1;2 [ P.:in“]

includes equations of motion altered e.g. to include collisions.
Elastic collisions of electrons on ions may be modelled by adding to the
equation of motion a random rotation in the Galilean frame in which the
mean ion velocity is zero. The momentum change must be added to the

ions.

n+1-8

We now have everything needed to write an equation for E = ~ Vé¢.
On substituting our expressions for p { and 6p into the field equatlon
(II 17) we have our electrostatic 1mp11c1t field equation

V-[14x]-988,,, = V-EL2) - p{2)] | | (11.21)

This is an elliptic field equation whose coefficients depend directly on
particle data accumulated on the spatial grid in the form of an
effective linear susceptiblility. The renk of the matrix equation is
determined by the number of field quantities defined on the zones; it is
independent of the number of particles and normally is much smaller.

The field corrector (II.21) can also be expressed in terms of time
filtered quantltles (Barnes et al, 1983b). In this representation, the
time filtered ¢ (0) and p(°) appear on the right and the adjustment é¢ to

¢ on the left.

This formalism guides successful implementation of spatial
smoothing (Langdon et al, 1983; Barnes et al, 1983b). It spatial
smoothing, denoted by the operator 8 is to be applied to p and ¢ on the
grid, then 8 must be included in x if the field solution is to take this
into account. In some applications, this has been essential (Sections
I1.B.2 and 11.B.3). Inconsistent smoothing has consequences to linear

stability (Section 11.C.4).

Advancing the Particles

The field E_,, is evaluated at positions {x{9]} in (I.5) in
integrating the particles to their final positions {x_ ,,}. The error
resulting from this approximation, and from the linearization of dp,
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introduces a possible limitatioh on At that dependé on field and density
gradients; see section II.C.1.

After advancing each particle to position x,,,. one can immediately
calculate its X ,, and its contribution to g, ,,. In this way, only one
pass through the particle list is required per time step, an advantage
when the particles are stored on a slower memory device such as rotating

magnetic disk.

5. Iterative Solution of Corrector Equation in Two Dimensions with

Magnetic Field

Except for one—dimensional systems, the use of direct inversion for
the solution of the field corrector equation (II.21) requires an
impractically large amount of. computer time and memory. Global
iterative methods (Concus and Golub, 1973; Nielson and Lewis, 1976;
Busnardo-Neto et al, 1977) are effective for the inversion of variable
coefficient elliptic operators of the type (I1.21), Other successful
methods include preconditioned conjugate gradient for asymmetric
operators (Kershaw, 1978; Petravic and Kuo-Petravic, 1979; Kershaw,
1980), "dynamic ADI" (Doss and Miller, 1979), and "multigrid adaptive"”
methods (Brandt, 1977); see also Brackbill and Forslund (1984).

The variable coefficient operator is approximated by a simpler
operator whose inverse may be obtained directly. In global iteration
techniques, this approximate inverse is applied to the residual
(difference between right and left hand members) of the full elliptic
equation. The adjustment to the solution is used to change the
residual. If the approximate operator is chosen judiciously,
convergence of the residual to an acceptably small value will occur in a

few iterations.

The simplest such scheme for (I1.21) is obtained by replacing the
variable x by a constant tensor x, (Barnes and Kamimura, 1982; Tajima
and LeBoeuf, 1981). The resulting constant coefficient operator may be
directly inverted using Fast Fourier Transform techniques. It is
natural to choose x, to be the average value of x over the domain,
however, this choice leads to divergence of the iteration for certain
density profiles. A more reliable choice, suggested by Concus and Golub
(1973) is to choose Xo corresponding to the average of the maximum and
the minimum densities. Thus, x, is taken as
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Xo = #(Pe max * Pe,ninlk X5 po (11.22)
The global iteration then proceeds by defining the residual as

e = V2¢(0) 4+ p(0) 4 v.[14x(x)]-Vop, (I11.23)
where m is the iteration index. The iteration equation is obtained
using the approximate operator as

—V-[1+x°]-v[6¢m+l—6¢m] =€, (11.24)

Equation (I1.24) is easily inverted by Fourier transforming. If k is
the Fourier transform variable, the iteration may be represented as

60nsq (k)= 8¢, + € (k)/[k2+k-xq k] (11.25)

After é¢, is replaced by 6¢,,,. the residual is recomputed and
convergence is tested by computing the maximum of €n+y Over the mesh.
It is convenient to use a combination of x and k space to compute €net-
The constant coefficient part, V26¢n+1' may be evaluated in k space.
The nonconstant coefficient part is evaluated by transforming 6Ppeq to x
space, multiplying by x and transforming back to k space. If x contains
‘a smoothing operator 8 this is applied in k space and also included in

Xo-

The global iteration described here has been shown to be convergent
and efficient in a number of applications (Barnes et al, 1983a; Barnes
et al, 1983b). Some applications are described in Section II.B.

6. Comparison to the "Moment"” Method

The field predictor (I1I.11) has some features in common with the
field predictor in the moment method. This is not surprising since both
methods attempt en approximate solution of similar equations. The
relation of terms earising in the implicit moment end direct implicit
viewpoints is discussed by Mason (1984) and Langdon et al (1983); here
we summarize and comment briefly.

The counterpart to x in the moment method is approximated from the
dens1ty p, rather than being formed from 5n+1 or pgg . The source term
pn+1 in (II.11) is replaced by P, Plus the divergence of current and
stress tensor terms. If there could be no finite-difference errors,
this combination would equal 3n+i. _ These approximations result in a
stability constraint kv At < 1 or kvAt < 1 (Section II.C.1) that does
not arise in the direct method, as well as requiring more computation.
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We believe that the particle equations themselves are a better guide to
the zero-order state than are the moment equations.

As moment and direct codes are borrowing features from each other,
the distinction becomes more that of viewpoint in deriving algorithms
and less in the resulting codes themselves. Experience with moment
codes using ad hoc spatial differencing encouraged experimentation with
simpler differencing in direct codes. Insight gained from the direct
method shows how to eliminate the stress tensor which contributes to the
kv, At constraint in moment codes (Brackbill and Forslund, 1984). Design
of optimal codes requires understanding the fruits of both viewpoints.

II.B. Representative results

1. Free expansion of a plasma slab

Denavit (1981) used the . one-dimensional expansion of a plasma slab
as as one check on his early moment-method code. Featuring sharp
gradients initially and a large range of density, this problem is also
used to check and improve variations of direct-method algorithms.
Friedman et al (1981) emphasize best performance in a one—-dimensional
electrostatic implementation. Langdon et al (1984), as outlined here,
sought to isolate those forms most suitable for extension to a
two-dimensional and electromagnetic code. Without resorting to spatial
smoothing, adequate accuracy and robust behavior were obtained.
Smoothing makes the field equation more expensive to solve, and the
resulting loss of resolution may be too costly in 2d. With nAx = 64
particles per cell in the slab initially, and values of w At as large
as 120 (much larger than have been reported previously for unmagnetized
plasma), they find that two parameters measure the stress on the

algorithm.

The more importent parameter is x; = ﬂqutz/hleI. where q and m
are the particle charge and mass, and |Ax| is. the zone volume. This is
a worst-case measure of the validity of linearization in the field
prediction, as stressed by short-wavelength sampling fluctuations in the
charge density. Using the simplified algorithm of Section II.A.3 with
either (II.13a) or (II.13b), they obtain reasonable results with x, well
over 100. Most other variants, including the momentum—conserving
algorithm (Section 1I1.C.2), suffer nonlinear numerical instability at

the edge of the expansion when x,; 2 1.

With x; written as ﬁ(upeAt)z/Nc. where N, is the number of
particles per cell (nAx in one dimension), the value of being able to
run with x; >> 1 is clarified. Many applications of two—dimensional
explicit codes require only N, 2 10. If we were restricted to x; < 1,
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we would need a number of particles per cell exceeding (upeAt)z. which
would be a severe limitation. -

The second parameter is vtAt/Ax. the: ratio of thermal electron
transit distance per cycle to the zone size. With vtAt/Ax > 1, energy
conservation is degraded in the absence of spatial smoothing. The
ability of a direct—-implicit code to remain stable is wuseful with
nonuniform meshes where some cell dimensions may be much smaller, and
helps evade failures due to uninteresting transients or small regions.

2. lon-acoustic fluctuations of a nonequilibrium plasma

The ion—acoustic fluctations of a uniform thermal, unmagnetized,
two—temperature, one—-dimensional plasma are examined (Barnes et al,
1983b). Since the ion-acoustic fluctuations represent an extremely
small part of the total fluctuation energy of a thermal plasme and are
strongly affected by electron Landau demping in the parameter range
studied, these results represent a severe test of the applicability of

the model.

Plasma parameters for the case shown here were; electron Debye
length Ap, = 0.05, mass ratio mi/me = 100, temperature ratio fl'e/Tl = 20,
initial electron and ion densities are equal and uniform. The numerical
parameters used were; cell size Ax = 1, system length L, = 128, number
of particles of each species N, = 9216. Periodic boundary conditions
were taken and the particle shape, introduced as a smoothing of grid
quantities, was given by a Gaussian §(x) = exp(—rz/Zaz)/a(Zn)*. with a =
3Ax. The time step was fixed at wp‘At = 10, a factor of 50-100 over
that possible for an explicit algorithm,.

Simulation results are summarized in Figs. 1 and 2. The time
evolution of the total energy normalized to its initial value is shown
in Fig. 1. A very slow cooling of the plasma is observed. The total
energy loss is less than 10% over the time interval o et=0.0—1.0><105.
The physical cooling rate of the electrons onto the ions is much larger
for the simulation parameters than the numerical rate (Barnes et al,

1983b) .

The collective behavior of the plasma at frequencies w<<wp, is
displayed in Fig. 2. The time—averaged electrostatic energy per degree
of freedom, kgT, /2 (kg is Boltzmann's constant), or fluctuation

spectrum, is shown in the figure.

A stringent test of the electron response at low frequencies is
afforded by comparison of the simulation results with theory. 1If the
resonant electron response is retained by the direct method, the
fluctuation spectrum will be given by the upper curve in Fig. 2. If the
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low-frequency electron response is only adiabatic, the lower curve is
predicted. The ratio of the former to the latter is approximately
Te/Ti. The simulation spectrum indicated by dots closely follows the
prediction including resonant electron response. Note also that the
wavenumbers with maximum energy observed in the simulation and predicted
by theory agree exactly. At larger wavenumbers, the theory is
questionable because of approximations made in the derivation.

In summary, the fluctuation spectrum indicates that the resonant
electron response at low frequencies is described accurately by the
implicit method. It is also clear from these results that fluctuations
at mode frequencies higher than the ion—acoustic range have been
suppressed; otherwise the spectrum would have been nearly flat in this

frequency range.

3. Gravitational interchange instability of a magnetized plasma

Using the direct method, and treating both the electrons and ions
as zero gyroradius particles using the method described in Section IlI
(with gyroradius effects neglected), a two-dimensional magnetized plasma
is examined. An unstable gravitational interchange is studied for an
inhomogeneous plasma. This calculation is carried out for system size
L, = L, = 32Ax, number of particles N, = 4608, mass ratio m;/m, = 100,
electron cyclotron frequency 1, = v, ,., and a=3Ax in the Gaussian shape

factor 8. The magnetic field is normal to the simulation plane.

Electrons and ions are loaded initially with their guiding center
velocity V, = 0 in such a way that the distribution of particles is
uniform in the left half of the simulation domain. No particles are
loaded in the right half of the domain. A gravitational acceleration to
the right drives an unstable interchange localized near the interface at

the middle of the domain.

The effect of the polarization motion of the ions is very important
for this high-density plasma (api/hi>>1). If the polarization motion is
neglected, the growth rate becomes unphysically large for high density.
For the simulation parameters considered here, the physical growth rate
is 1/7 the growth rate found neglecting polarization.

In the simulation, the global iteration method described above is
used and an extremely large time step of wpeAt = 109 is used.
Simulation results for an appropriate gravitational acceleration are
summarized in Figs. 3 and 4. In this case the plasma is initially
perturbed with the longest y wavelength so that the growth rate of a
single mode may be more accurately measured. In Fig. 3, the
electrostatic field energy is shown in a semi-log plot as a function of
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time. The observed growth rate is within 15% of the theoretically
predicted value, verifying the correct modelling of ion polarization
motion.

Figure 5 shows three different snapshots of the ion density
contours. The positions of roughly 103 of the ions are also shown as
points in the figure. As can be seen, the unstable interface near the
middle of the simulation domain evolves through a linear growth stage,
toward a nonlinear '"spike and bubble” stage. The only saturation
mechanism is provided by the finite size of the periodic simulation
domain. Thus, plasma leaving on the right (left) reenters on the left
(right). In this way, the configuration evolves toward a state of
nearly steady flow with constant potential driving stationary vortices.

II1.C. Properties of Implicit Particle Codes

1. Remaining limitations on time step

Although we have overcome the stability limit on o ,At, there
remain restrictions which involve At. In addition to tﬁe aspects
discussed under the following subheadings, Sections II.C.3 and [1.C.4

are also relevant.

Doppler frequency limit

When a particle moves in one time step a distance greater than a
scale length L for spatial variation of fields, the particle does not
sample the field sufficiently closely in space to respond accurately to
the field structure. In analysis, this is stated in terms of the
Doppler-shifted frequency @ - k-v. If the thermal spread of electron
velocities, v, = (Te/he)f. and wavenumber k are such that kv,At 2 1,
then the Doppler—shifted frequency exceeds At~! for a large fraction of
the electrons. It is not surprising that the collective response is
qualitatively incorrect, showing an excess of shielding, as indicated by
the dielectric function becoming

€ >1 + ﬁwpeAtz + (ion response) (II.26a)

instead of the correct result,

€ =1 + (kAD)'z + (ion response) (11.26b)

Violation of the restriction kv, At < 1 in direct-method
electrostatic codes does not in general result in instability. In many

applications, the sharp field gradients may arise only during time
intervals, or in spatial regions, such that the inaccuracy does not
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interfere with the purpose of the simulation. In contrast, strong
instability which has been observed with the moment method has been
traced to a constraint on kv At (Sakagami et al, 1981; Denavit, private
communication) and is attributed to lack of convergence (Denavit, 1981;
Cohen et al, 1982a). Such instability, as opposed to innocuous
inaccuracy, is disruptive to the simulation.

The Doppler frequency, or transit time, 1limit is analyzed by
Langdon (1979a), Denavit (1981), Cohen et al (1982b), Langdon et al
(1983), and references therein. See also Sections II.B.1 and I1.C.4 of

this Chapter.

Limits due to field and density gradients

Linearization of the time—advanced charge density breaks down when
field or density gradients are too large. Nonetheless, the codes have
been made to function successfully, but convergence is not guaranteed.

Evaluation of 6x in terms of E_ ,, at x{?) rather than at x_,,
creates a error ¢ ¢éx-VE,. Denavit (1981) interprets this term in terms
of the frequency of oscillation of a particle trapped in a local
potential minimum. The relative error is p(“trapAt)z' To compare the
severity of this and the transit-time limitations, note that

B(w,,apAt)? = B(kv At)® q¢/T, (11.27)

Thus, if we take kv, At < 1 as given, the linearization is justified if
qp < T. Put another way, if kvAt < 1, then (w,,,,At)? = kaAt? is small
if aAt, the impulse in one time step, is small compared to v. In
grossly nonneutral regions, where the net charge Ap is comparable to the

electron charge p,.
Blwy,apht)? = (w,,8t)2 Ap/p, (11.28)
will not be small unless wpeAt is small in that region.

A similar limit due to magnetic field gradient can be interpreted
as (w,At)2 £ 1, where wy is the "betatron frequency”.

The expression 0p = — V:(pdx) is valid when 6x is smaller than
density gradient scale lengths.

The validity of linearization is treated by Denavit (1981), Langdon
et al (1983), Cohen et al (1984), and references therein, and in Section
II.B.1 of this Chapter.
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2. Momentum Conservation

Properties of the physical system can often be reproduced exactly
in the simulation, even though the governing equations are not solved
exactly. Momentum conservation is easily arranged for in explicit
electrostatic simulations. Here we show how to carry this property over

to implicit simulation.

Referring to Section II.A, we see from (I1.4) and (I1.8) that the
net particle acceleration can be written

zi:miai.n+l = szj:;].n-i-lEj.n-o-l (11.29)

In explicit codes, in the analogous sum.Ax), pE, E is the solution with p
as source. The question of momentum conservation is then confined to
the symmetry properties of the partial differential equations and the
boundary conditions. Momentum conservation is easily obtained where
expected physically, at least with Cartesian meshes.

The same would be true in an implicit code if we solved the field
and particle equations exactly, but we do not. In (II.29), EJ_n+1
corresponds not to ;j.n+l but to

~(V38) ne1 = Pj.nes +00; =);qi[s(xj—ii.n“)—axs'(x]-?c'i_n“)] (11.30)

with éx given by (I1.7). So, if we revise (I1.8) to

B8 001 = 83X DE) oy [80X,%,  04y)-8%8" (X%, 14)) ] (11.31)

where [..] is the same as in (I1.30), and if the Poisson equation (II.8)
is solved exactly, then p and E correspond, and momentum is conserved

when appropriate physically.

Let us interpret (II.31) as two steps in the particle mover.
First, evaluate an interim position

xi.n+l = axi + ;i.n+1 (11.32)

BAt?(q;/m,)Ax E:S(xj_zl.n+l)Ej.n+l + X net

using (I1.7) for 6x. Then, evaluate a at position x' using an expansion

of (II1.6) about X,,,, which is (II.31). This a; _,, is used for the
final values of Va+i end x_.,. The source term for Poisson's equation,
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p+6p, is a répresentation of the density of positions {x'} at which the
field is evaluated; this makes momentum conservation possible.

We can retain momentum conservation while simplifying the field
equation by using a simpler expression for éx in forming the field
equation (11.30) and in moving the particles, (II.32). For example, we
can replace (II.7) by

¢ -9 '
ox, = - ﬂAtz(qi/ml)Ax}j: so(xj+§_§1,n+1) j+l.n+;x TLLL (11.33)

where S, is the nearest-—grid-point (NGP) weighting function. If the
function S used in (II.30) and (II1.31) is the linear spline, S;, then
(11.30) becomes a tridiagonal field equation for ¢, instead of the
pentadiagonal equation found with strict differencing. When integrating
the particles, the interim position (I1.32) is also modified to use S;,.
The field equation can be written

Py.n+1 = [(1+X1+§)E1+§.n+1 = (1+X1-§)E1-§.n+1]/Ax-

(11.34)

. Pi+1.0+¢1 "Pj,n+1
with E; 4 pn4y =~ yra— (11.35)
and x4 = §:5A‘2(q?/“1) So(Xy43 %, n41) (11.38)
from which E; ooy = 3[B)4 net * Ejag.arr] (11.37)

[Equations (11.33)-(11.37) are the same in one dimension as for the
Hamiltonian algorithm (Langdon, Cohen and Friedman, 1983, Section 4.2)]
This scheme is almost as simple as that in section II.A.3.

This topic was first treated by Friedman et al (1983), who extend
the treatment to include spatial smoothing.

Note that momentum conservation cannot be contrived for the
formulation of Barnes et al (1983b), because time filtering of mesh
variables destroys Galilean invariance.
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3. Energy Conservation and Artificial Cooling

To understand better the origins and control of nonphysical cooling
(a manifestation of error in codes using damped equations of motion
(Adeam et al, 1982; Barnes et al, 1983b), the Lenard-Balescu collision
operator corresponding to implicit time integration is examined. We
find two spurious terms due to phase errors associated with damping.
One is a nonresonant contribution to the polarization drag. The other
is a spurious nonresonant contribution to dynemical friction and
corresponds to the drag calculated by Cohen et al (1982b) but with the
field given by the thermal fluctuation spectrum.

Quantitative calculations of cooling rates based on the kinetic
theory described here have not yet been carried out. However, cooling
rates observed in simulations of thermal plasmas (Barnes, et al., 1983b)
indicate that cooling is likely dominated by damping of a broad band of
thermal fluctuations. Thus, the reduction in cooling for schemes with
third-order damping compared with those with first—order damping is much
less thean the reduction in the damping of low-frequency plasma modes.
The cooling rate is reduced when the number of modes is increased,
decreasing the fluctuation energy per mode. Further, the most effective
means of reducing cooling is to cut the width of the fluctuation
spectrum by cutting off in wavenumber (spatial smoothing) or in
frequency (by increasing At). Finally, acceptably low cooling rates may
be obtained in a third-order demping scheme with a moderate amount of

spatial smoothing.

Kinetic Theory

The kinetic theory is based on Birdsall and Langdon (1984),
Chapters 9 and 12. Here we neglect the effects of the spatial grid. In
the Fokker-Planck collision operator (Balescu~Lenard equation)
corresponding to implicit time integration, the velocity diffusion is
not altered in any interesting way, but the velocity drag terms are.

Polarization Drag

One part of the drag, due to anisotropic polarization of an
unmagnetized plasma by the test particle, in a Galilean—invariant code

(e.g. using Eqs. (1.9-1.10), is

qudk k 1 (11.38)

(o1 = o JE R ™ T(kkv)
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_ q* fdk k , f(v')
= "o p? J}Zn)a-i?jhv le(k,k-v) |2 B (r-v-)ei0
(in rationalized cgs units), in which
e(k,w) =1 + o: jhv fo(v) (*)a-k-v+i0 (11.39)

where (X/A),_x.y+i0 1S the ratio of Fourier amplitudes of x{!) and a(!)
resulting from the finite-difference equation of motion (and would be
—(w-k:v+i0)~2 for exact integration), and e(k,w) is the corresponding
dielectric function. The meaning of the term "+i0" is that (")u+lo is
understood to mean the limit of (..)”+l7 as 7y approaches zero through
positive values. Normally Im(X/A),_y.,4+10 = =76'(wo—k-v) which leads to
the resonant (Landau) contribution, but here Im(X/A), _y.v410 I8 also
nonzero for w-k*v £ 0 due to phase errors associated with numerical

damping.

"Dynemical Friction"”

The other part of the drag, the "dynemical friction" can also be
expressed in terms of Im(X/A):

2
(@) f1uct = %2 f(_g_kﬂs;l_: k'(gn)k.ﬂ Im(*)ﬂ-k-v-l-lo (11.40)

where (EE)k.a is the fluctuation spectrum. This result corresponds to
that in Section 5 of (Cohen et al, 1982b), in which the field consisted
of a single wave rather than a spectrum. Here we use the thermal
fluctuation spectrum (Langdon, 1979b; Birdsall and Langdon, 1984)

(EE)y,, = 22 (#®)y., (11.41)
(P?)y .o = ,e(z—r"f,(;—lz fdv fo(v) E) 6(o—k:v-qu,) (11.42)

where = 2n/At, and «, K2 express ratios between the quantities p, ¢
and E defined on the grid, thusly: E = —-ix¢, p = K2¢ (rationalized cgs
units). As a check on the theory, we can verify that the expressions
(I1.38) and (I1.40), with the thermal spectrum, together conserve
momentum of the overall distribution of particles.
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Energy Loss (Cooling)

The Fokker-Planck equation describing the evolution of the velocity
distribution function f(v) is

o _ o )
91 = 5ol 1®pe1 = 1@y 1ee + 5-10] (11.43)

where D(v) is the diffusion tensor. Because the resonant parts of
(I1.38) and (I1.40) cancel, (11.43) conserves energy with continuous
time. We can compute the rate of cooling due to the nonresonant part of

numerical origin:

%tK E. =fdv v-(a) f(v) = - 2“0—2 f(21r) 11;2 dvdv' f(v)f(v’')

1
X [Ie(k-k-V)I2 le(k k-v' )|2] k- (v=v') Im()y. (y-v')

(11.44)

where it is now to be understood that the resonant part of Im(X/A) is
dropped. For the C; equation of motion scheme, Im(X/A) =c AtzslnuAt
while for the D, scheme, Im(X/A), AtzslnwAt/(5—4coswAt) (Cohen et al,
1982b). In both cases, if the spread in particle velocities is less
than n/k_,,At then the integrand is always positive so only cooling
results. This is true quite generally for damped time integration,

including explicit integration (Adam et al, 1982).

For these schemes with 3rd—-order damping, the last two factors in
the integrand together are proportional to [k-(v-v')At]2 for small
values. With first-order damping. this approaches a nonzero constant
instead (Cohen et al, 1982b). Other implementations of third-order
schemes, e.g. Barnes et al (1983b), produce different phase errors and

hence different cooling rates.

We hope that application of this analysis will lead to insight into
control of errors in implicit simulation.
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4. Effects of imperfect field solution on linear stability and

dispersion

. Analysis of linear stability and dispersion in uniform plasma, as
described by dispersion relations, provides guidance to permissible
simplifications of the field solution. Generically, these relations are

of the form _
Kz(k)e(k-0)¢ = ([v'xv]codg - [V'xV].t,iet)k6¢ (11.45)

where [...] are the Fourier transforms of the V:xV operator, in uniform
plasma; "strict” and '"code"” refer to the rigorous representation of
Section II.A.2 and to the representation used in the code; K% is the
ratio p/¢; 6¢ is the transform of ¢, ., - ¢§2{; e(k,w) = 0 is the
dispersion relation applicable to ezact solution of the implicit,
finite-differenced particle and field equations. Expressions for ¢ for
warm plasma, including exactly the effects of Ax and At, have been
published (Langdon, 1879a). It is assumed that iteration over the
particles is not in use. Here we show some contributors to the
right~hand-side of (11.45) and some qualitative consequences, but do not
attempt an encyclopaedic enumeration of the possibilities.

Far from being relevant only to direct-method codes, similar, but
more complex, methods and results arise with moment-method codes

(Denavit, 1981).

Non-strict differencing and inconsistent filtering

" For the one-dimensional simplified algorithm (Section II1.A.3),
e(k,w)¢ = ~ (w At)®sin?(kAx/2) ¢ - (11.48)

If smoothing of p or ¢ is used without being included in the
susceptibility term we find, now ignoring the spatial grid,

e(k,w)p = ~ ﬁ(uPAt)z(l—Sz) 8¢ (11.47)
Spatial differencing and/or smoothing also modify €.

With ¢{%) =0, 6¢ = ¢. The 6¢ terms do not upset linear stability
(assuming 8 € 1). On the other hand, with ¢£2z = ¢,, the phase of 5¢/¢

=(1 - z"1) is destabilizing in the above examples. Such analysis
provides guidance among the many possibilities (Cohen et al, 1984).
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Nonlocal susceptibility

In addition to the effects of simplified differencing, Barnes etf al
(1983b) acquire an additional contribution due to evaluation of E .+ at
x, rather then x, ., (Equation (I.11) versus (1.10)) without teking this

n
into account in the susceptibility. Ignoring spatial grid effects,
their dp is

65(x) = V-[$o{9) (x)2t2V6(x—v()at) ] (11.48)

wéighted over zero-order particle velocities v(0), In practice, the
v(0)At term is dropped, a local approximation. With no iteration over
the particle list and field prediction, the dispersion relation becomes

e(k,w)p = é(uPAt)z[l - th fo(v)eik“"‘]ﬂﬁ
= §(o,at)?[1 — etk Tat-F(uv,at)T]yg (11.49)

where f, is the particle velocity distribution function and the second
line applies for a drifting Maxwellian. Due to the destabilizing effect
of the right-hand—-side, this formulation is not recommended for

application to drifting plasma.

The linear dispersion errors which are responsible for this
destabilization may be corrected without requiring additional particle
quantities, if this is desirable. As the analysis above shows, the
destabilizing phase error comes from the neglected displacement between
the time n particle positions where the acceleration of Eq. (I.11) is
applied, and the time n+1 particle positions which produce the time n+l
density. If the acceleration (I1.11) is redefined as

a, = éﬁ[ﬁn_l(xn—Atin_*) + Epyy(xp¥atvy )] (11.50)

this displacement vanishes. When the dispersion relation of this
scheme, with no iteration over the particle list and field predictor, is
investigated for a cold drifting beam, no linear instability is found
for any value of the drift speed or time step.
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I11. GYRO AVERAGED PARTICLE SIMULAYION (GAPS)

In this section is developed a technique useful for studying
magnetized plasma phenomena which are much slower than the period of
cyclotron oscillation for either or both species. In such applications,
it is neither desirable nor efficient to follow the rapid gyration of
individual particles about the ‘'magnetic field. Rather, the primitive
equations of motion should be replaced by equations which contain only
the slower time scales of interest, i.e. the transit and drift time

scales.

The approach adopted here is to replace the nearly point particles
which represent the fastest time scales by the gyro average of such a
charge. Thus, in both the charge and force calculations, the shape
factor is chosen to represent a ring of charge corresponding to the
motion of a point charge during a single gyroperiod.

Such gyroaveraging leads to equations of motion which still contain
the terms driving high-frequency motion. Implicit differencing of these
gyroaveraged equations removes the vestiges of this unwanted
high-frequency branch. The resulting model selects the solution which
evolves only on the slower transit and drift time scales.

An alternative approach (Lee, 1983; Dubin et al, 1983) replaces the
primitive physical fields with fields obtained by a several—-term
adiabatic Hamiltonian theory. It seems difficult to include effects of
spatially inhomogeneous magnetic geometries in this alternate approach.
The techniques described in this section may be applied to arbitrary
geometries if the gyroradius is taken small but finite (Barnes and
Kemimura, 1982). The case of strong inhomogeneity and large k,r, (where
k) is the wave number perpendicular to the magnetic field and r; a
typical gyroradius) seems difficult to treat satisfactorily. Some
comments on these difficulties are given at the end of this section.

The properties of GAPS are developed for the simplest case: the
magnetic field B is assumed uniform and the electric field E is assumed
electrostatic (VXE = 0). First, the motion of individual simulation
particles, representing guiding center positions, are considered. Then
the implementation of GAPS is shown to depend on the direct method of
the previous section. Some implementation details are given.
Extensions to nonuniform B and to electromagnetic E are briefly

indicated.

III.A Individual Particle Motion

An intuitively appealing technique for removing the fast cyclotron
time scale from particle motion, is the replacement of the instantaneous
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Lorentz force on a particle by its average over the fast time scale.
Northrup (1961) has shown that such a procedure describes drift motion
in an electromagnetic field under appropriate conditions. Such a
procedure is based on the existence of an adiabatic invariant associated
with the wide separation of the time scale for gyration and that for
variation of the electromagnetic field.

When such an assumption is appropriate, as is supposed in the case
of interest here, there exists an invariant u given to lowest order by

the magnetic moment,

2
mv
l. (I11.1)

Thus, the particle orbit is given to lowest order by

x=¢ + g(09) (111.2)

where ¢ is the (slowly varying) guiding center position, g is the
(rapidly varying) instantaneous gyrovector, and 8 the gyrophase. The
magnitude of g is the gyroradius r, = V2u/qQt and its direction rotates
about B with #. If i is any unit vector normal to B,

ixB
g =r;[cosd i + sind -E-] (111.3)

With the decomposition of Eq. III.2, the Lorentz force is replaced
by its gyroaverage. Thus, the equation of motion of a simulation
particle becomes

2 .
m, — = — f de F[¢, + g(68)] + q,V,xB, (111.4)

where the B field has been assumed uniform, and V, = d;i/dt is the
guiding center velocity. '

The gyroaveraged force may be simplified using Eq. (I.5)

F

1 2n
# T o ! a0 F[¢ + g(0)] = qlax| X B, ;S(X; ~¢,). (111.5)

where
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with
1 2n
buy = - J‘ de ¢(Xj +g). (I11.7)

0

The gyroaveraged equation of motion (II1I1.4) describes drift and
transit motion if the proper initial conditions are chosen (Northrup,
1961). These initial conditions associate a wunique perpendicular
velocity V, = Uﬁ(f.V".O) with a guiding center whose initial position is
¢ eand whose initial parallel velocity is V. The general solution
consists of the desired drift branch, a rapid perpendicular gyration
about the magnetic field, and the nonlinear interaction of these two

branches.

To select the desired drift solution in a difference approximation
to (I111.4), the initial V, assigned to each guiding center is chosen as
close to Uﬁ as practical. Unwanted gyrations are avoided by the proper
differencing of the last term on the right of (IIl.4). It the
differencing of this term is modified slightly from that wused in
explicit plasma simulation (I.7ab), gyrations are weakly demped and the
desired drift motion is recovered.

The simplest treatment is to slightly decenter the leapfrog
difference equations. This leads to the difference equations

€netr ~€n

at - Vo (111.8)
vn+ —vn— . B

#M ¥ _ 8 + [G)Vouy +(37)V, 41 x %c—. (111.9)

where a, =F, /m and 7y > 0 is a small decentering parameter. The
effects of the dissipation and phase error introduced by decentering the
VxB term are very small since only the motion perpendicular to B is
affected. Since gyroaveraging effectively removes cyclotron noise,
perpendicular motion is little modified by decentering.

To obtain the contribution of a simulation particle to the charge
density, recall that the same particle cloud contributes to the charge
as samples the force. Thus, li"‘l may be written as
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F“l = q; Jhx E(x)S“(x-fi). (I111.10)
where
1 2n
S“(Jx) = e f de sS(éx+g). (III.11)
0

The charge density associated with a plasma of gyroaveraged particles is
thus -

p.(x,t) =§S"‘qn“ =‘Z‘: dx’ S“(x—x')qn“(x'.t). (I11.12)

where n, is the number density of magnetic moments u.

III.B The Direct Method for Electrostatic GAPS

In this section, the GAPS method is combined with the direct method
to give a long time step method in which there is no restriction on the
time step from either the plasma oscillation period or the cyclotron

period of either species.

For small gyroradius particles, the gyroaveraged acceleration 8n
is nearly a,. In that case, Eqs. (II1.8-9) are the seme as the earlier
equations of motion (I.7ab) for y = 0. For y > 0, the susceptibility is
slightly modified.

As in Section II1.A, the equations of motion are now linearized
about a prediction {;ggk.vggl}. Linearization of (III1.8) and (III.9)

gives

6¢ = At6V (111.13)
qAt
6V = T_- —S*E (I11.14)
Y 2m
where the tensor T7 is given by
(111.15)

2 = [ -
(1 + 07)T7 =1-6xI+20.,.0,
with 6, = 1(1+y)0Dt.

Following the procedure described in Section II.A, the field
corrector equation is found to be similar to that obtained previously.
The susceptibility tensor is now an operator containing the gyroaveraged
particle shape. The susceptibility is found from (III.14) to be the
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same as that given by (11.20) with T replaced by T7 and the addition of
spatial smoothing. Thus, the methods described earlier may be used to
solve the field corrector associated with a single, small-gyroradius

gyroaveraged species, even for (At >> 1.

In a warm, magnetized plasma, spatial scale lengths are such that
the electron gyroradius may be neglected for low-frequency electrostatic
phenomena. The ion gyroradius is not negligible, however, since
fluctuations with scale size comparable to the thermal ion gyroradius
are both predicted theoretically and observed experimentally. If both
the electron and ion species are treated by gyroaveraged equations
similar to Eqs. (II1.8) and (IIl.9), with the explicit acceleration a,
replaced by the implicit acceleration a,, a low-frequency algorithm
results in which neither the plasma frequencies nor the cyclotron

frequencies constrain At.

In this case, however, the field corrector equation will contain
the gyroaveraged ion response as part of the susceptibility. The
solution of such a non-local, velocity—dependent operator equation is
cumbersome. This complication is avoided by treating only the electron
species implicitly according to Egs. (I11.8) and (III.9) with the
zero—gyro-radius acceleration a_. The ion species may be advanced by
the explicit equations (III1.8) and (II1.9) as written. Just as there
are no ion plasma modes in a neutral plasma, there is no stability
constraint on At associated with the time scale m;}.

To see this, consider the case of a cold, uniform, unmagnetized
plasma in which the electrons are treated implicitly and the ions
explicitly. The dispersion relation is a superposition of the implicit
equation (I.13) and the explicit equation (I.8)

2
1+ “’P°2Mz(zi1)2[2:——1 + E =0 (111.186)

Note that for m,/m; = O and w, At >> 1, the destabilizing explicit
ion response [represented by the last term on the left of Eq. (I111.16)]
is not sufficient to destabilize the time advancement scheme. In fact,
for m,/m; < 1/3 (which. is trivially satisfied) there are no unstable
roots of Eq. (III.18) irrespective of the size of At.

This observation applies to all implicit plasma simulation
algorithms. It is sufficient to implicitly advance the electrons and
therefore include only their susceptibility in the field corrector
equation to assure numerical stability of all plasma oscillations.

The direct electrostatic GAPS algorithm advances the electrons with
the predictor—corrector method outlined in Section II above. The field
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corrector equation is identical to Eqs. (I1.21) and (11.20) except T is
replaced by T1 defined by Eq. (I1I1.15) and only the electron
susceptibility enters. The ions are advanced explicitly according to
Eqs. (II1.8) and (I11.9) with the gyroaveraged acceleration L

computed from & single gyroperiod of the ion motion in the speclfled B
field and the self-consistent E field.

The calculation of the gyroaverages of a, and S may be computed by
substepping each ion orbit around a single gyroperiod using a fractional
time step 6t such that a gyroperiod is completed in 4-10 fractional

steps.

A more complete development of the properties of GAPS is beyond the
scope of this chapter. We remark here only that it can be shown that
the guiding centers of GAPS move according to a gyroaveraged
Hamiltonian. Thus, a kinetic equation may be obtained for the
collisionless GAPS plasma. .It may be shown that the linear dispersion
relation for drift waves is recovered from this kinetic equation.

Extensions of the GAPS algorithm to inhomogeneous B and
electromagnetic E are possible. In these cases, the electron gyroradius
must be included to first order in the gyroradius and the gyroaveraged
ion equation must include the gyroaveraged §xB force in addition to the

electric force of Eq. (III.9).

1V. ELECTROMAGNETIC DIRECT IMPLICIT METHOD

Until recently, plasma .simulation including the full
electromagnetic field was done with explicit differencing of both the
particles and fields. The latter adds a Courant—-Levy-Friedrichs

time-step limitation At < ¢/A, where A is epproximately the mesh spacing
used for the fields. This limitation has been removed in two ways. One
is to alter the field equations so that they no longer support wave
propagation. A proven approach here is the Darwin, or megnetoinductive,
model. Another is to use implicit differencing of the field equations.
Recently, codes have used implicit differencing of both fields and

particles.

Darwin codes eliminate the Courant restriction At<c/A by dropping
Maxwell'’'s transverse displacement current term. These 'pre-Maxwell
equations” eliminate electromagnetic wave propagation while retaining
electrostatic, megnetostatic and inductive electric fields. The
equivalence of this nonradiative approximation to the Darwin Lagrangian,
which retains as much of the electromagnetic interaction as possible
without including retardation, was shown by Keufman and Rostler (19871).
Nielson and Lewis (1976) provide many references for the historical
development of these codes. Although these codes have used explicit
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differencing for the particles, it is also possible to make an implicit
Darwin code.

For applications not requiring a kinetic description of the
electrons, codes using a hybrid of particle ions and fluid electrons are
indicated. With Darwin and quasistatic approximations, long time scales
are accessible as in a fully implicit code but with less noise (Hewett,

1980, and references therein).

Implicit fields reproduce electromagnetic wave propagation at long
wavelengths (>>cAt). At short wavelengths, the electrostatic,
magnetostatic, and inductive electric fields are retained, as in a
Darwin code. Implicit fields can be used with explicit particles. With
implicit particles, Langmuir waves are stabilized at all wavelengths, as
in a implicit electrostatic code. The electrostatic fields are accurate
for wavelengths longer than the electron transit distance (v, At).
These properties make an implicit electromagnetic code attractive e.g.
to modeling of intense electron flow which is subject to pinching,
Weibel instability (Brackbill and Forslund, 1982), and other processes
generating magnetic fields which alter the eléctron flow (Forslund and

Brackbill, 1982).

Here we outline the Darwin algorithm and a fully implicit
electromagnetic algorithm. The latter is an extension of Langdon (1883)
and is being implemented by Hewett and Langdon. Barnes and Kemimura
have preliminary results with their version of this algorithm.

IV.A Darwin, or Magnetoinductive, Fields

The Darwin approximation neglects the transverse displacemeni
current 9E,/d8t, leaving

9E

cVxB = J, =1 + ‘EIL (Iv.1)
8B

(1v.2)

cVXE =

Given E_, B, the particles are integrated by explicit differencing to
and x .. Extrapolation of wv_, to v, ,, permits collection of

v
from which B,,, is obtained, e.g. by solution of ¢V?B = - VxJ.

J

n+
n+1"*

Unlike usual electromagnetic codes, the Ampere equation (IV.1) cannot be
used to advance E; in time. Instead,
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al
c?V2E, = T{T (1v.3)

is used at time level n+l1. This creates a time-centering problem. To
preserve 24 order accuracy in time, (I1V.3) needs a time-advanced
expression for BJT/at. To ensure stability, 8J/8t is expressed in terms
of the advanced E, using moments accumulated from the particles:

a—: = = V.p(vv) + (ap/m)E + (qp(v)/mc) x B | (1v.4)

summed over species. This leads to an elliptic equation for the
advanced fields of form

c?V2E, - og(x)ET = - X V-p(vv) + (Lap(v)/mc)xB + wjE, — V¢ (1vV.5).

at time level n+tl. The divergence of this equation, together with V-E;
= 0, determines F. This elliptic equation provides instantaneous

- propagation of B and Ey, as is necessary for stability. Although this

description uses moment equations, it seems possible to make a
direct-method Darwin code.

After presenting the implicit algorithm, we meke comparisons
between the Darwin and the direct and moment implicit algorithms.

IV.B Implicit Electromagnetic Fields

Here we must select a time-differencing scheme for the fields, and
find a method for solving the coupled field and particle equations.
Desired features of the implicit differencing of the Maxwell equations

include:

e At long wavelengths, accuracy in dispersion Re w(k), and weak deamping
(e.g. Im w(k)/ck = 0(ckAt)3d; k is the wavevector).

e Stability (preferably demping) at short wavelengths = 2Ax ~stability
despite cAt 2> Ax (violation of the Courant condition for ezxplicit

~

differencing), and dissipation of inaccurately calculated short
wavelengths. -

e Compatible with implicit particles.
e Adaptable to general boundary conditions.

¢ Simplicity, and economy in storage.
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* Optionally able to recover the centered 2nd order scheme now commonly
used for the fields.

e Optionally able to recover the (nearly) centered Darwin scheme
(Nielson and Lewis, 19768).

D, time differencing

For the time differencing of the fields, we adapt the D, implicit
scheme developed for the particle equations of motion. For example, in
the particle equations (1.9,1.10), drop the vXB term, replace x by E, v
by cVxB, and a by -c?VxVxE to obtain the Maxwell equations in
rationalized cgs units (Panofsky and Phillips, 1962; Jackson, 1962):

E .. -E

cVXBn*_* = Jn-l-* + _n_"';_t__!' (IV.8a)
B.., -B__

—cVxE, = -fiizz—f—j (1v.6b)

(1V.8c)

where E, = %[En-l +E_,,]

is the result of a recursive low-pass filter with phase error 0(At?).
This phase error is an advance, not a lag as one gets if E _ , is not
used, so it provides stability when ckAt >> 1; in this limit the fields
are close to those in the Darwin approximation. Although equations
(IV.8) are heuristically motivated, their desirable properties may be

verified rigorously.

To advance the field values implicitly, eliminate E ., or B, 1 from
the coupled equations (IV.8) to obtain a single elliptic equation.

Eliminating Bn+* to form an equation for E_ ., yields
Eney + BePAtBVXVXE,,, = E, - J 1At + cAtVX[B,_4 - featWxE,_,]
(Iv.7)
—or, eliminate E ., to form an equation for Bn+*:

B,,j — #c2At?v2B, = B, ; + gcAtvx[Jn;* -E _, -E] (1v.8)

In either case, the right-hand—-side .is composed of known fields. The
lef t—-hand-sides have well-behaved elliptic operators. In two dimensions
(x,y), it is convenient to solve the z components of (IV.7) and (IV.8)
for E;, and B, respectively. This is two scalar uncoupled elliptic
equations to solve. Then use (IV.8a) and (IV.6b) to find the other

fields.
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To form a B, for use in the particle mover, we use e.g.
B, = B,_j - $At cVxE, (1v.9)
We use E_, rather than.E  as in (IV.6b), to simplify the linearized

particle equation.

Eqs. (IV.8a-1V.8b) differ from the wusual centered "leap—frog”
scheme only in that the elegtric field in Faraday's law here is En
instead of E,. If we replace E; in (IV.8b) with the linear combination
aE, + (1-a)E;, then with o=1 we obtain the D, scheme above, and the
leap~frog scheme with a=0. For intermediate values the upper bound on
At increases as a - 1. In problems where most cells are large and the
undamped leap—-frog scheme is preferred, but some cells are much smaller
(e.g. near a boundary, or for r-0 in ecylindrical or spherical
coordinates), one might use a=0 for the large cells and increase a to
maintain stability where cells are smaller. B. Godfrey (private
communication) observes that electromagnetic wave dispersion is improved
by operating close to the stability boundary.

IV.C The Direct Method for Implicit Particles and Fields

As in Section II.A.4 for the electrostatic case, the source terms
in Maxwell's equations (IV.8) are the densities {pggl.lgg%} and {6p,6J}
corresponding to the extrapolations {xﬁﬂ{;v&ﬂ‘}. plus the increments
{6x,6v} which depend on E__,.

Evaluation of the extrapolated demnsities.

The extrapolated current and charge densities {pggl.Jggz} are
evaluated as in explicit codes, such as ZOHAR (Langdon and Lasinski,

1976) and the Los Alamos WAVE code, from x{9]. vggl and x,. At the grid
point located at x,.

pfl] = T as(x; - x{]) (1V.10)
and (2] = T av{3] s(x; - x,+x{3]]) | (IV.11a)
or = T qvi?] 4s(x, -x,) + s(x; -x{3]D)] (IV.11b)
Neither expression for -Jgg is quite consistent with pggl and the

continuity equation, in that
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v-:;g; + (p{9) -p,)/At 0 (1v.12)

While it is possible to construct a J which does conserve charge,
it has been preferable in most explicit codes to use the above J and
then to apply a correction to the longitudinal component of J or of E .,
(Boris, 1970; Langdon and Lasinski, 1978). Here, we replace Jggl with

Iaeg = 388 + (W)/at, (IV.13a)
where -V2y = p{9) + v.[At3(9) - E_]. (1v.13b)

Note that the source term for ¥y would vanish if Jggi were consistent
with pgg{ and p,. Derivation of (IV.13b), and an altéernate correction

to En+l' are discussed below.

Evaluation of the increments due to future fields.

The care with which we express the increments {6p,6J} is a
compromise between complexity and strong convergence. If necessary,
they may be evaluated rigorously as derivatives of equations (IV.10) and
(IV.11) ("strict differencing”, Section [1.A.2, and Langdon et al, 1983,
section 4), or as simplified difference representations (Section I1.A.2)

of

ép = -V:[pbx], (Iv.14)
6] = pév - 4V x (J x 6x) (IV.15)
for each species. This form for 6éJ trivially conserves charge:

ép + AtV-6] = O, This property can easily be preserved in the spatial
differencing of 41J.

The terms in Eq. (IV.15) have both analytic and pictorial
justifications; see Fig. 5. A heuristic derivation of 4J uses an
analogy to magnetization current. The magnetic moment of the current
loop in the last diagram is

(1/2¢)|x x dx = (q/2cAt)éx x (vgg;At).
The current due to a density n(x) of these loops is
63 = cVxM = c¢Vx[n(q/2cAt) dx x vgg;At] = 4vx[sx x pvﬁgi]

which leads to the last term in (IV.15). A related term arises in
linearized particle codes (Cohen et al, 1980).



A careful examination of the locations at which E and 6] are
evaluated in Eq. (IV.15) shows a O(kvAt)? error. Because its phase is
neutral, this error is expected to be innocuous.

Construction of the Implicit Field Equation

We now have everything needed to write an equation for Eperr On
substituting our expressions for Jggi and 6J into the field equations

(IV.6-1V.7), we have

E,,, -E
oV x [ By,y + (389) x 6x)/2e 1= 35,y + p{8)ov + 21— (1V.160)

Bn+§ —Bn-i- |

-4 eVvx[E _, +E,]= m (1v.18b)
With (I1.18), the implicit te;ms pév and Jx6x are seen to be

pi8lév = [z:: p'::t 4-(I+R.')]-EMl = x-E . /At (IV.17a)

(9] x 6x = [);) J';;::f x %(I+R.)]-En+1 = c¢-Egyy (1V.17b)

The [...] are sums over species, not each particle. If only the
electrons are implicit, only they appear in (IV.17). In this case, the
terms [...] require only a knowledge of the electrons' p and J (in
addition to the met p and J used on the right side of (IV.16a)). In
general, it is sufficient to accumulate péﬂ?'. and Jgg .. separately
from species with differing q/m. This requires more storage, but no
more computation than for an explicit code.

Spatial differencing, follows in spirit the "gsimplified
differencing” of Section II.A.

Due to the correction (EA.18), the divergence of the Ampere-Maxwell
equation (IV.16a) recovers ezactly our electrostatic implicit field
equation, (I1.21) with E{?) = 0 and E_,, = - Vég_,,.

Equations (IV.16) and (IV.17) are the simplest yet proposed for
implicit field prediction, both in themselves and in what one must

accumulate from the particles.
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Longitudinal Field Correction

As mentioned above, the solution of (IV.16a) would fail slightly to
satisfy the longitudinal equation corresponding to (I1.21),

V-(14x)-E ., = p{9) (1v.18)

if J;,3 were not used in pface of Jsg . Equation (IV.13b) for the
correcgion is derived by substituting (IV.13a) and (IV.17a) into
(Iv.16a), taking the divergence, and comparing to (IV.18).

Alternatively, one could apply a longitudinal correction to the
solution of (IV.16a) with J{{] used for J;,,. That is, rewrite (IV.16a)
with (IV.17a) as

caty x [..] = I{9)at + x-B' + (E' -E,) (IV.19)

end solve for E‘, from which E ,, = E' -~ Vy. Comparing the divergence
of (IV.19) to (IV.18) gives

=V (14x) V¥ = p{9) - V- (14x)-E’ (1v.20)
With x << 1, this step corresponds to Boris' correction to V:E_ , ,, eand
has the identical result to the correction to J (Langdon and Lasinski,
1976). Here the transverse part of E_ ., differs between the two
methods; the correction (IV.20) corresponds nearly to using (1+x)-Wy
instead of ¥V in (1V.13a).

IV.D Comparison of Darwin and Implicit Codes

The need for time—advanced currents, and expressing their
dependence on the advanced fields, are central to both Darwin and
implicit codes. Indeed, the direct—implicit codes were conceived with
Darwin codes in mind. The similarity to moment-implicit methods, in
which (IV.4) is a key equation, is obvious. In the Darwin code of
(Nielson and Lewis, 1976), although the particle integration remains
explicit, they paid most of the price of being fully implicit.

With explicit time differencing in a Darwin code, the time step is
still limited by the electron plasma period and Alfven wave periods.
The field solution in Darwin codes is complicated by the separation of
longitudinal and transverse components of E. Implicit approaches may
subsume the Darwin model in many applications.: On the other hand, when
electromagnetic wave propagation is not required, nonphysical
dissipation due to implicit differencing of the fields could make the
Darwin model more accurate.
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V. CONCLUDING REMARKS

In this Chapter we apply the "direct” method to derive implicit PIC
algorithms that are simpler, and less restrictive in some respects, then
the "moment” algorithms published to date. A strict application of the
direct viewpoint provides tools for analysis of the convergence and
stability of both direct and moment algorithms, and shows how to enforce
properties such as momentum conservation. Analytic insights and
experience in applications gained with both methods have begun to
advance the development of each. As moment and direct codes are
borrowing features from each other, the distinction becomes more that of
viewpoint in deriving algorithms and less in the resulting codes

themselves.

We have not discussed boundary conditions. In implicit codes,
particle boundary conditions can be complex. Particle deletion or .
emission at a surface depends on E ,;; therefore the particle boundary
conditions enter into the implicit field equations. For electromagnetic
fields it appears that methods used in explicit codes can be adapted.
At Palaiseau for example, Adam and Gourdin have adapted the
outgoing-wave boundary conditions of Lindman (1975) by using implicit
differencing of his boundary wave equations.

Many generalizations are possible. To include relativity, one
would linearize the relativistic particle equation—-of-motion (Langdon
and Lasinski, 1976; Boris, 1970). In practice, this adds complexity
because the susceptibility x becomes velocity-dependent. Electron-ion
collisions (v < At‘l) may be described as an addition to the rotation R
in the equation—of-motion. If a component of the plasma is modeled by
fluid equations then those equations are linearized to find {6p,dJ}
(Denavit, 1984). Combining fluid and particle descriptions is
difficult, but not more so in the direct method than in the moment

method.

ACKNOWLEDGMENTS

This work is an outgrowth of our stimulating and productive
collaborations with B. I. Cohen, A. Friedman, D. W. Hewett, T.
Kamimura, J.-N. LeBoeuf and T. Tajima. It is a pleasure to
acknowledge valuable conversations with J. C. Adem, J. U. Brackbill,
J. Denavit, D. Forslund, B. Godfrey, A. Gourdin Heron, R. J.
Mason, and D. Nielson. This work was performed under the auspices of
the U. S. Department of Energy by the Lawrence Livermore Laboratory
under Contract No. W-7405-Eng—48, and the Institute for Fusion Studies
under Contract No. DE-FG05-B80ET-53088. :



langdon and Barnes, DIRECT IMPLICIT PLASMA SIMULATION

A.

P.

41 . UCRL-90802

REFERENCES

C. Adam, A. Gourdin Serveniere, A. B. Langdon, "Electron
Sub-Cycling in Particle Simulation of Plasmas", J. Comp. Phys. 47

(1982), 229.

C. Barnes and T. Kamimura, "LOMEGA: A Low Frequency, Field
Implicit Method for Plasma Simulation”, Institute of Plasma Physics,
IPPJ-570, Nagoya University, April 1982.

C. Barnes, T. Kamimure, J.-N. Leboeuf, and T. Tajima, paper 2A4,
Proceedings of the Tenth Conference on Numerical Simulation of
Plasmas, San Diego, CA, Jan. 4-6, 1983a.

C. Barnes, T. Kamimura, J.-N. LeBoeuf and T. Tajima, "Implicit
Particle Simulation of Magnetized Plasmas", J. Comp. Phys. 52, 480

(1983b).
K. Birdsall and D. Fuss, J. Comput. Phys. 3, 494 (1969).

K. Birdsall and A. B. Langdon, "Plasma Physics Via Computer
Simulation’", McGraw-Hill, New York, 1984, Chapter 12.

P. Boris and K. V. Roberts, J. Comput. Phys. 4, 552 (1969).

P. Boris, "Relativistic Plasma Simulation —-Optimization of a Hybrid
Code", Proceedings of the Fourth Conference on Numerical Simulation of

Plasmas, Nov. 1970.

U. Brackbill and D. Ww. Forslund, "An Implicit Method for
Electromagnetic Plasma Simulation in Two Dimensions"”, J. Comp. Phys.

46 (1982), 271.

uU. Brackbill and D. W. Forslund, "Simulation of low frequency,
electromagnetic phenomena in plasmas"”, a chapter in this volume.

Brandt, Math. Comp. 31, 333 (1977).

Buneman, J. Comp. Phys. 1 (1967), 517.

Burger, D. A. Dunn, and A. S. Halstead, Phys. Fluids 8, 2283
(1965).

Busnardo-Neto, P. L. Pritchett, A. T. Lin, and J. M. Dawson,

J. Comput. Phys. 23, 300 (1977).



Langdon and Bornes, DIRECT IMPLICIT PLASMA SIMULATION

B.

42 UCRL-90802

I. Cohen, S. P. Auerbach and J. A. Byers, "Some Conservation
Properties of Linearized Particle Codes", Phys. Fluids 23 (1980),

2529.

I. Cohen, R. P. Freis and V. Tﬁomas. "Orbit—Averaged Implicit
Particle Codes”, J. Comp. Phys. 45 (1982a), 345.

I. Cohen, A. B. Langdon and A. Friedman, "Implicit Time
Integration for Plasme Simulation”, J. Comp. Phys. 46 (1982b), 15.

I. Cohen, A. B. Lengdon and A. Friedman, "Smoothing and Spatial
Grid Effects in Direct Implicit Particle Simulation”, UCRL-88363,

LLNL, September 1983, submitted to J. Comput . Phys. Also, paper
IC15, Proceedings of the Tenth Conference on Numerical Simulation of

Plasmas", San Diego, CA, Jan. 4-6, 1983.

Cohen, "Orbit averaging ,and sub—cycling in particle simulation of
plasma"”, UCRL-89668, a chapter in this volume.

Concus and G. H. Golub, S/AM J. Numer. Anal. 10, 1103 (1973).

Denavit, "Time Filtering Particle Simulations with wpeAt>>1". J.
Comp. Phys. 42 (1981), 337.

D. Denavit, "One-Dimensional Time—Implicit Hybrid Simulation"”, to
be published, and "One-Dimensional Time-Implicit Hybrid Simulations”,
paper 1B15, Proceedings of the Tenth Conference on Numerical
Simulation of Plasmas", San Diego, CA, Jan. 4-6, 1983.

Doss and K. Miller, SIAM J. MNumer. A4nal. 16, 837 (1979).

H. E. Dubin, J. A. Krommes, C. Oberman, W. W. Lee, "Nonlinear
Gyrokinetic Equations", Phys. Fluids 26, 3524 (1983).

W. Forslund and J. U. Brackbill, "Magnetic Field Induced Surface
Transport on Laser Irradiated Foils”, Phys. Rev. Lett. 48 (1982),

1614.

Friedman, A. B. Langdon and B. I. Cohen, "A Direct Method for
Implicit Particle—in~Cell Simulation”, Comments on Plasma Physics and

Controlled Fusion 6 (1981), 225.

Friedman, A. B. Langdon and B. 1I. Cohen, Laser Program Annual
Report-1982, Lawrence Livermore National Laboratory, Livermore, CA,

UCRL-80021-82 (1983), p. 3-56.



Langdon ond Bames, DIRECT IMPLICIT PLASMA SIMULATION 43

D.

UCRL—90802

W. Hewett, "A Global Method of Solving the Electron-Field Equations
in a Zero—Inertia—Electron-Hybrid Plasma Simulation Code", J. Comput.

Phys. 38, 378 (1980).
W. Hockney, J. Assoc. Comput. Mach. 12, 95 (1965).

D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p.
616 ff.

N. Kaufman and P. .S. Rostler, "The Darwin Model as a Tool for
Electromagnetic Plasma Simulation”, Phys. Fluids 14 (1971), 4486.

S. Kershaw, "The Incomplete Cholesky—Conjugate Gradient Method for
the Iterative Solution of Systems of Linear Equations”, J. Comput.

Phys. 26, 43 (1978).

S. Kershaw, "On the Problem of Unstable Pivots in the Incomplete
LU-Conjugate Gradient Method”, J. Comput. Phys. 38, 114 (1980).

B. Langdon, ""Nonphysical Modifications to Oscillations,
Fluctuations and Collisions due to Space-Time Differencing"”,
Proceedings of the Fourth Conference on Numerical Simulation of

Plasmas, Nov. 1970.
B. Langdon, J. Comp. Phys. 6 (1970), 247.

B. Langdon and C. K. Birdsall, Phys. ‘Fluids 13 (1970), 2115.

B. Langdon, J. Comp. Phys. 12 (1973), 247.

B. Langdon and B. F. Lasinski, "Electromagnetic and Relativistic
Plasma Simulation Models”, in "Methods in Computational Physics"”, (B.
Alder, S. Fernbach, and M, Rotenberg, Eds, Volume Ed. J. Killeen),
p. 327, Academic Press, New York, 1976.

B. Lengdon, J. Comp. Phys. 30 (1979), 202.
B. Langdon, Phys. Fluids 22 (1979), 163.

B. Langdon, "Electromagnetic Direct Implicit PIC Simulation”,
UCRL-88979, March 1983; and Laser Program Annual Report-1982, Lawrence
Livermore National Laboratory, Livermore, CA, UCRL-80021-82 (1983), p.

3-563. v

B. Langdon, B. I. Cohen and A. Friedman, '"Direct Implicit
Large-Timestep Particle Simulation of Plasma”, J. Comp. Phys. 51

(1983), 107.



Langdon and Barnes, OIRECT DMPLICIT PLASMA SIMULATION 44 UCRL-90602

A. B. Langdon, D. W. Hewett and A. Friedman, Laser Program Annual
Report-1983, Lawrence Livermore National Laboratory, Livermore, CA,

UCRL-80021-83 (1984).

J. N. Leboeuf, T. Tajima, A. Y. Aydemir; D. C. Barnes, and T.
Kamimura, Bull. Am. Phys. Soc., 27, 1035 (1982).

W. W. Lee, Phys. Fluids, 28, 556 (1983).

E. L. Lindman, J. Comput. Phys. 18, 66 (1975).

R. J. Mason, "Impliﬁit Moment Particle Simulation of Plasmas", J.
Comp. Phys. 41 (1981), 233.

R. J. Mason, "Apparent and Real Thermal Inhibition in Laser—Produced
Plasmas"”, Phys. Rev. Lett. 47 (1981), 8652.

R. J. Mason, "Hybrid and collisional implicit plasma simulation
models", a chapter in this volume.

R. L. Morse and C. W. Nielson, Phys. Fluids 12, 2418 (1969).

R. L. Morse, in Methods in Computational Physics, edited by B. Alder,
S. Fernbach, and M. Rotenberg (Academic, New York, 1870), Vol. 9, p.

213.

C. W. Nielson and H. R. Lewis, "Particle Code Models in the
Nonradiative Limit"”, in "Methods in Computational Physics”, (B.
Alder, S. Fernbach, and M. Rotenberg, Eds, Vol. Ed. J. Killeen),
p- 367, Academic Press, N.Y., 1976.

T. G. Northrup, Annals of Phys. 15, 19 (1861).

J. H. Orens, J. P. Boris, end 1. Haber, in Proceedings of the
Fourth Conference on the Numerical Simulation of Plasmas, edited by J.
P. Boris and R. Shanny (U. S. Government Printing Office,

Washington, D. C.), p. 526.

. K. H. Panofsky and M. Phillips, Classical FElectricity and
Magnetism (Addison-Wesley, Reading, Massachusetts, 1962), p. 461.

M. Petravic and G. Kuo-Petravic, "An ILUCG Algorithm Which Minimizes
in the Euclidean Norm”, J. Comput. Phys. 32, 263 (1979).

of

H. Sakagami, K. Nishihara and D. Colombant, “Stability
Laser

Time-Filtering Particle Code Simulation”, Institute of
Engineering report I1LE8117P, August 10, 1981.



Longdon and Bornes, DIRECT IMPLICIT PLASMA SIMULATION 45 n UCRL-80802
T. Tajima and J. N. Leboeuf, Bull. Am. Phys. Soc., 26, 986 (1981).

S. P. Yu, G. P. Kooyers, and 0. Buneman, J. Appl. Phys. 36, 2550
(1965).



longdon ond Barnes, DIRECT IMPLICIT PLASMA SIMULATION 46 UCRL-80602

FIGURES
1. Total energy normalized to its t=0 value, as a function of time.

2. Fluctuation spectrum for thermal plasma. Normalized electrostatic
field energy as a function of wavenumber is shown. Upper curve is
theory including electron Landau demping; lower curve is theory
neglecting electron Landau demping; points are simulation results.

3. Electrostatic field energy (normalized) as a function of time for
unstable gravitational interchange.

4. Snapshots of finite size ion density codtours are shown, along with
point plots of ion positions for three times near saturation of

gravitational interchange. a) wpet = 3x105, b) wpet = 4x10%, ¢) wpet =
5x109, :
5. Geometric interpretation of the terms in J ., = Jgg + 6]: VWhile
J.+4 corresponds to moving the particle directly from x, to x 51" it can
be Fegarded as the sum of 3 motions: (1) motion from x, to x£+}. giving
J;ﬂ;. (2) then motion from xggz to x ,,» egiving pév plus (3) a
circulation term -~ %Vx(dex) to cancel the effect of the "detour” to

xgg . This is not needed to get p,,, but does affect B and E,.
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